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15. STANY NIEUSTALONE W OBWODACH SLS 
 
15.1. WPROWADZENIE 
 

Rozpatrzmy układ SLS, na który działamy zdeterminowanym wymu-
szeniem x(t) określonym dla t∈(-∞,+∞). 

Jeśli interesuje nas funkcja określonej wielkości fizycznej w tym 
układzie, to możemy nazywać ją odpowiedzią r(t) układu na istniejące 
wymuszenie x(t) – rys.15.1. 
 

x t ( ) r t ( )układ
SLS

  Rys.15.1. 
 

Dotychczas rozpatrywaliśmy obwody w stanie ustalonym - co 
oznaczało, że moment włączenia źródła wymuszającego do obwodu był 
nieskończenie odległy od momentu obserwacji. Wówczas wszystkie na-
pięcia i prądy występujące w obwodzie miały ten sam charakter, co wy-
muszenie - rys.15.2. 
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tobs

  Rys.15.2. 
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Jeśli w jakimś momencie czasu (tk) nastąpi 
dowolna zmiana warunków pracy układu 

zmiana sygnału wymuszającego (np. zmiana 
parametrów sygnału, w tym także załączenia 
lub wyłączenia) 

zmiana struktury obwodu (np. odłączenie ele-
mentu, dołączenie elementu dodatkowego) 

zmiana parametrów obwodu 
 

to nowe warunki wymuszają oczywiście inną funkcję odpowiedzi układu, 
czyli inny stan ustalony. 
 

Przejście od jednego stanu ustalonego do drugiego - przejście zapo-
czątkowane w chwili komutacji (tk) - trwa pewien określony czas, który 
nazywamy czasem trwania stanu nieustalonego (t∞) a stan układu, w któ-
rym znajduje się on w przedziale czasu [tk,t∞], nazywamy STANEM 
NIEUSTALONYM (odpowiedź ma charakter różny od wymuszenia) – 
rys.15.3. 

r t ( )

t
t 0 0

tt 0 0

t =k 0

r t ( )

tk stan
nieustalony

stan
nieustalonyI stan

ustalony
II stan

ustalony

II stan
ustalony

I stan
ustalony

  Rys.15.3. 

Przyjmujemy założenie, że czas trwania komutacji jest równy zeru, tzn. 
wszystkie zmiany odbywają się bezzwłocznie. 

KOMUTACJA 
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15.2. PRAWA KOMUTACJI, WARUNKI POCZĄTKOWE 
 

Komutacja może być przyczyną występowania skokowych zmian 
prądów i napięć w obwodzie. Istnieją jednak ograniczenia, którym podlega 
każdy obwód. Wynikają one z faktu, iż w realnych obwodach moc chwi-
lowa nie może być nieskończenie wielka 

 ( ) ( )
∞<=

dt
tWdtp  (15.1) 

co oznacza ciągłość funkcji energii – ciągłość ta musi występować rów-
nież w chwili komutacji. 

Na podstawie zasady ciągłości energii w obwodzie oraz pamiętając, 
że wartość energii nagromadzonej 

w polu magnetycznym cewki o in-
dukcyjności L, przez którą prze-
pływa prąd iL wynosi (2.8) 

 ( ) ( )tiL
2
1tW 2

LL =   

w polu elektrycznym kondensatora 
o pojemności C, naładowanego do 
napięcia uC wynosi (2.5) 

 ( ) ( )tuC
2
1tW 2

CC =  

Możemy sformułować dwa prawa komutacji: 

Pierwsze prawo komutacji 
Prąd płynący przez cewkę nie mo-
że ulec skokowej zmianie, co 
oznacza, że prąd cewki w chwili 
tuż po komutacji równa się prądo-
wi tuż przed komutacją 

 ( ) ( )−+ = 00 LL ii  (15.2) 

Drugie prawo komutacji 
Napięcie na kondensatorze nie mo-
że zmienić się skokowo, co ozna-
cza, że napięcie na kondensatorze 
w chwili tuż po komutacji jest rów-
ne napięciu tuż przed komutacją 

 ( ) ( )−+ = 00 CC uu  (15.3)

 
UWAGA: Nie ma żadnych przesłanek wykluczających skokowe zmiany 

pozostałych wielkości w obwodzie, tzn.: napięć na cewkach, 
prądów kondensatorów lub też prądów i napięć rezystorów. 
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Zakładając, że chwilę komutacji uważać będziemy za chwilę począt-
kową (tK=0) analizy obwodu w stanie nieustalonym, istotne jest wyzna-
czenie warunków początkowych procesu. 

Warunki początkowe stanowi zbiór wartości prądów w indukcyj-
nościach i napięć na pojemnościach układu 
w chwili początkowej. Warunki początko-
we określają całkowitą wartość energii 
zgromadzonej w układzie w chwili tK=0. 

Wyznaczenie warunków początkowych w obwodzie wiąże się z: 
• rozwiązaniem stanu ustalonego obwodu przed komutacją, 
• określeniem postaci czasowej tego rozwiązania na prądy cewek 

i napięcia kondensatorów, 
• wyznaczeniem rozwiązania odpowiadającego chwili czasowej 

komutacji. 

Oznacza to, iż podstawą do ustalenia warunków początkowych obwo-
du są prawa komutacji. 

UWAGA: Warunki początkowe mogą być (i często są) zerowe! 
 
 
15.3. ANALIZA STANÓW NIEUSTALONYCH 
 

W celu zbadania zmian wartości danej wielkości obwodu (prądu, na-
pięcia) w stanie nieustalonym stosuje się w praktyce jedną z dwóch metod: 
metodę klasyczną bądź metodę operatorową. 
 
 

 

 

 

 

 
 

Wyznaczenie rozwiązań obwodów SLS w stanie nieustalonym 

Metoda klasyczna 
 
polegająca na bezpośrednim rozwią-
zaniu równań różniczkowych (zwy-
czajnych, liniowych o stałych współ-
czynnikach) opisujących obwód 

Metoda operatorowa 
 
wykorzystująca właściwości 
przekształcenia Laplace’a. 
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15.4. METODA KLASYCZNA 
 

Modelem matematycznym obwodu elektrycznego klasy SLS, o do-
wolnej konfiguracji, jest układ równań różniczkowo-całkowych, wynika-
jących z praw Kirchhoffa i definicji elementów R, L i C. W celu wyzna-
czenia poszukiwanych prądów i napięć wszystkie równania należy spro-
wadzić do układu równań różniczkowych o postaci ogólnej 
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 (15.4) 

gdzie: r1(t) ... rn(t) – zmienne oznaczające prądy cewek lub napięcia kondensatorów 
(tzw. zmienne stanu); stałe współczynniki aij stanowią kombinację wartości pa-
rametrów R, L, C; funkcje czasu f1(t) ... fn(t) związane z wymuszeniami x1(t) ... 
xn(t); liczba równań n zależy od liczby reaktancji w obwodzie. 

 
Rozwiązując układ równań z uwagi na poszukiwaną funkcję odpo-

wiedzi r(t) przy znanym wymuszeniu x(t) otrzymujemy równanie różnicz-
kowe zwyczajne, liniowe o stałych współczynnikach n-tego rzędu o posta-
ci: 

 
( ) ( ) ( ) ( ) ( )txtra

dt
trda...

dt
trda

dt
trda 011n

1n

1nn

n

n =++++ −

−

−  (15.5) 

Rozwiązaniem równania (15.5) określającym analityczną postać od-
powiedzi r(t) jest tak zwana całka ogólna równania niejednorodnego 
(C.O.R.N.) 
 .N.R.O.C)t(r =  (15.6) 

Teoria równań różniczkowych mówi, że jest ona sumą dwóch składo-
wych: całki ogólnej równania jednorodnego (C.O.R.J.) i całki szczególnej 
równania niejednorodnego (C.S.R.N.). Zatem 
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.N.R.O.C)t(r =  =  .J.R.O.C   +  .N.R.S.C  (15.7) 
 

składowa odpowiedzi 
niezależna od wymuszenia 

 składowa odpowiedzi 
wywołana przez wymuszenia 

oznaczana  rS(t)  i nazywana 

składową swobodną 
(przejściową) odpowiedzi 

 oznaczana  rW(t)  i nazywana 

składową wymuszoną 
(ustaloną) odpowiedzi 

Czyli: 
)t(r  =  )t(rS   +  )t(rW  (15.8) 

 

 Składowa wymuszona rW(t) opisu-
je stan ustalony w obwodzie przy 
działającym wymuszeniu, może być 
zatem łatwo wyznaczona dowolną z 
poznanych metod analizy obwodów.  

  

Składowa swobodna rS(t) opisuje pro-
cesy zachodzące w obwodzie na skutek 
niezerowych warunków początkowych 
przy braku wymuszeń zewnętrznych. 
Składowa przejściowa zależy jedynie od 
warunków początkowych, struktury ob-
wodu i wartości parametrów tego obwo-
du. Cechą charakterystyczną rS(t) jest jej 
zanikanie z biegiem czasu do zera  [ ] 0)t(rlim S

t
=

+∞→
 (15.9)

 

Równanie składowej swobodnej rS(t) otrzymuje się zakładając wymu-
szenie x(t) we wzorze (15.5) równe zeru i zastępując zmienną r(t) poprzez 
jej składową swobodną rS(t) 

 
( ) ( ) ( ) ( ) 0tra

dt
trda...

dt
trda

dt
trda S0

S
11n

S
1n

1nn
S

n

n =++++ −

−

−  (15.10) 

Rozwiązanie równania jednorodnego (10.10) uzyskuje się za pośrednictwem równa-
nia charakterystycznego, które ma postać 

 0asa...sasa 01
1n

1n
n

n =++++ −
−  (15.11) 

jeśli wielomian ten posiada tylko pierwiastki pojedyncze si (i=1,2, ... n), to 

 ∑
=

=
n

1i

ts
iS

ieA)t(r  (15.12) 

gdzie współczynniki Ai (i=1,2, ... n) są stałymi całkowania, których wartości wyzna-
cza się w oparciu o znajomość warunków początkowych. 
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PRZYKŁAD 15.1 
Rozpatrzymy stan nieustalony w obwodzie 

szeregowym RC przy zerowych warunkach po-
czątkowych i załączeniu napięcia stałego E
(rys.a). 

Zerowe warunki początkowe oznaczają, że 

0)0(uC =−  

Po przełączeniu wyłącznika w powstaje w obwo-
dzie stan nieustalony. Schemat obwodu dla stanu 
nieustalonego ma postać przedstawioną na rys.b. 

C
w

R

E

a)

uC(t) C

R

E

b) i(t)

Stosując prawo napięciowe Kirchhoffa dla tego obwodu możemy napisać 

0)t(u)t(iRE C =−−  

i uwzględniając, że   
dt

)t(udC)t(i C=   otrzymujemy równanie różniczkowe nie-

jednorodne o postaci [patrz (15.5)] 

Etu
dt

tudRC C
C =+ )()(

 

Stan nieustalony jest superpozycją stanu ustalonego i przejściowego. 

)(tuC  =  )(tuCS   +  )(tuCW  

Stan ustalony przy wymuszeniu stałym ozna-
cza, że kondensator stanowi przerwę (rys.c). 

Zgodnie z NPK napięcie ustalone kondensa-
tora jest równe 

E)t(uCW =  
uCW(t)

R

E

c)

Schemat obwodu dla stanu przejściowego (po 
zwarciu źródła napięciowego) - rys.d. 

Dla tego obwodu otrzymujemy równanie róż-
niczkowe jednorodne o postaci [patrz (15.10)] 

0)t(u
dt

)t(udRC CS
CS =+  

iS(t)

uCS(t) C

Rd)
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Równanie charakterystyczne można zapisać jako [patrz (15.11)] 

01sRC =+  

Równanie to posiada jeden pierwiastek s1=-1/RC. W związku z powyższym jego 
rozwiązanie wynikające ze wzoru (15.12) przyjmuje uproszczoną postać 

CR
t

1CS eA)t(u
−

=  

W rozwiązaniu tym współczynnik A1 jest stałą całkowania, której wartość wyzna-
czamy w oparciu o znajomość warunków początkowych. 
 

Rozwiązanie ostateczne, będące sumą składowej wymuszonej i swobodnej 
przybiera postać [patrz (15.8)] 

CR
t

1CSCWC eAE)t(u)t(u)t(u
−

+=+=  

Ponieważ drugie prawo komutacji mówi, że  )0(u)0(u CC
+− =  stąd wobec 

0)0(uC =−   otrzymujemy  
1AE0 +=    oraz   EA1 −=  

Czyli rozwiązanie czasowe określające przebieg napięcia na kondensatorze 
przyjmuje postać 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=−=

−−
CR
t

CR
t

C e1EeEE)t(u  

 
)t(r  =  )t(rS   +  )t(rW   

)(tuC  =  CR
t

eE
−

−   +  E   
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)(tuC  =  CR
t

eE
−

−   +  E   
 

t
5τ4τ3τ2ττ

E

-E

0

-0,37 E

0,63 E

u (t)CW

u (t)C

u (t)CS

Miarą prędkości 
zmian przebiegów nie-
ustalonych w obwodzie 
może być stała czasu 
obwodu. 

Stała czasu τ ob-
wodu jest to czas, po 
którym wartość bez-
względna składowej 
swobodnej odpowie-
dzi maleje e-krotnie. 

 
Stała czasu rozpatrywanego obwodu RC wyraża się iloczynem rezystancji R i 

pojemności C  
CR=τ  

 
Z teoretycznego punktu widzenia obwód osiąga stan ustalony 

po czasie nieskończonym. 
 

Praktycznie jednak stan ustalony następuje wówczas, gdy 
składowa swobodna jest do pominięcia 

w stopniu zależnym od żądanej dokładności (tabela 1) 
 
Tablica 1. 

t 1τ 2τ 3τ 4τ 4,6τ 5τ 

%100)(

1A
trS  36,8 13,5 5 1,8 1 0,7 

)t(r
)t(r

W
 0,632 0,865 0,95 0,982 0,99 0,993 
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15.5. METODA OPERATOROWA 
 

Bardziej efektywną metodą od metody klasycznej jest metoda opera-
torowa – jej efektywność polega na „algebraizacji” równania różniczko-
wego, przy czym warunki początkowe wchodzą niejako automatycznie do 
„zalgebraizowanego”. Mimo iż jest to okrężna droga rozwiązania, wynik 
uzyskujemy znacznie szybciej niż metodą bezpośrednią. 
 

Schemat dokonywanych operacji 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aby biegle posługiwać się metodą operatorową musimy poznać: 

1. Przekształcenia Laplace’a (transformaty sygnałów przyczynowych) 

2. Podstawowe twierdzenia rachunku operatorowego 
3. Schematy zastępcze i podstawowe prawa obwodów w ra-

chunku operatorowym 
4. Metody wyznaczania oryginału funkcji operatorowej 

rozwiązanie 
algebraiczne 

L 
WYMUSZENIE 

M
E

TO
D

A
 

K
LA

SY
C

ZN
A

 

L-1

x(t) 

 

ODPOWIEDŹ 
CZASOWA 

r(t) 

 

Odpowiedź operatorowa 
R(s) 

W.P. 

 

Równanie 
różniczkowo-całkowe

(w dziedzinie czasu) 

 

OBWÓD 
ELEKTRYCZNY 

Operatorowy 
schemat zastępczy 

obwodu 

Równanie 
operatorowe 

(algebraiczne w dziedzinie 
zmiennej zespolonej s) 

W.P.

W.P.
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15.5.1. PRZEKSZTAŁCENIA  LAPLACE’A 
 

Rozpatrywać będziemy funkcję f(t) zmiennej rzeczywistej t spełniają-
cą następujące warunki: 

- funkcja f(t) jest określona dla t >0 i równa zeru, gdy t <0; 
- wartość bezwzględna funkcji f(t) nie rośnie szybciej niż funkcja 

wykładnicza, gdy t→∞ ( tbeM)t(f ≤   gdzie M>0 oraz b>0 ) 
 

Przekształcenie, które przyporządkowuje funkcji f(t) zmiennej 
rzeczywistej t, funkcję F(s) będącą funkcją zmiennej zespolonej 
s=σ+jω  za pomocą zależności 

 [ ] dte)t(f)s(F)t(f
0

ts∫
∞

−==L  (15.13) 

nazywamy prostym przekształceniem Laplace’a 
lub L-transformatą 

 
Funkcję F(s) zmiennej zespolonej s nazywamy transformatą funkcji f(t). 
 

Wyznaczenie funkcji f(t) (nazywanej oryginałem) odpowiadają-
cej znanej funkcji F(s) umożliwia odwrotne przekształcenie Laplace’a 
nazywane też L-1-transformatą 

 [ ])s(Fdse)s(F
j2

1)t(f 1
jc

jc

ts −
∞+

∞−

== ∫ L
π

 (15.14) 

Przekształcenia Laplace’a wyrażone wzorami (15.13) i (15.14) są 
wzajemnie jednoznaczne, czyli 

[ ]{ } 0tdla)t(f)t(f1 >=− LL  

(15.15) 
f(t) F(s)

L-1

L
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TRANSFORMATY SYGNAŁÓW PRZYCZYNOWCH 

A) Funkcja jednostkowa 
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B) Funkcja wykładnicza 
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C) Funkcja harmoniczna 
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Tablica 2. Transformaty Laplace’a  wybranych funkcji 

lp. f(t) F(s) lp. f(t) F(s) 

1 1 
s
1

 13 ( ) taeta1 −−  ( ) 2as
s
+

 

2 a 
s
a

 14 tsinω  
22s ω

ω
+

 

3 t 2s
1

 15 tcosω  
22s

s
ω+

 

4 nt  
n∈N

1ns
!n
+  16 tsine ta ω−  222 )s( ωω

ω
++

5 tae −  as
1
+

 17 tcose ta ω−  222 )s(
as

ωω ++
+

6 taet −  ( ) 2as
1
+

 18 tsint ω  ( )222s

s2

ω

ω

+
 

7 
tan et −  

n∈N ( ) 1nas
!n

++
 19 tcost ω  ( )222

22

s

s

ω

ω

+

−
 

8 τ

τ
te1 −  

τs1
1
+

 20 tsh β  22s β
β
−

 

9 ( )tae1
a
1 −−  ( )ass

1
+

 21 tch β  22s
s
β−

 

10 τte1 −−  ( )τs1s
1
+

 22 tshe ta β−  ( ) 22as β
β
−+

 

11 
ab
ee tbta

−
− −−

 ( )( )bsas
1

++
23 tche ta β−  ( ) 22as

as
β−+

+
 

12 
ba

ebea tbta

−
− −−

( )( )bsas
s

++
24 ( )tδ  1 
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15.5.2. PODSTAWOWE TWIERDZENIA 
RACHUNKU OPERATOROWEGO 

 
A) Twierdzenie o liniowości 

Jeżeli funkcje f1(t) i f2(t) posiadają transformaty, tzn. 
[ ] [ ] )s(F)t(fi)s(F)t(f 2211 == LL  

to dla dowolnych liczb a oraz b zachodzi 

 [ ] )s(Fb)s(Fa)t(fb)t(fa 2121 +=+L  (15.16) 

 
B) Twierdzenie o transformacie pochodnej 

Jeśli funkcja f(t) i jej pochodna f ’(t)  są L-transformowalne, to trans-
formatę pochodnej możemy wyrazić przez transformatę samej funkcji na-
stępująco 

 [ ] [ ] )0()()0()()(' ++ −=−= fsFsftfstf LL  (15.17) 

gdzie: f(0+) – prawostronna granica funkcji f(t) w punkcie t=0 
(wartość początkowa funkcji f(t)) 

Transformatę pochodnej n-tego rzędu funkcji f(t) obliczamy ze wzoru 

 ( )[ ] ( ) ( ) )0(fs)s(Fs)t(f k
1n

0k

1knnn +
−

=

−−∑−=L  (15.18) 

Jeśli warunki początkowe są zerowe to widać wyraźnie, że 
różniczkowanie funkcji w dziedzinie czasu 
odpowiada mnożeniu L-transformaty samej funkcji przez s 

w potędze równej rzędowi pochodnej. 
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C) Twierdzenie o transformacie całki 

Jeśli funkcja f(t) jest L-transformowalna, to transformatę całki może-
my wyrazić przez transformatę samej funkcji następująco 

 [ ]
( )

s
f

s
sFtf )0()()(

1 +−

+=∫L  (15.19) 

gdzie: f(-1)(0+) – oznacza wartość całki w chwili t=0 + 
(można ją rozumieć jako wartość początkową - warunek początkowy) 

Jeśli warunek początkowy jest zerowy to  
całkowanie funkcji w dziedzinie czasu 
odpowiada dzieleniu L-transformaty funkcji podcałkowej przez s 

 

D) Twierdzenie o przesunięciu w dziedzinie rzeczywistej (czasu) 

Jeżeli dana jest funkcja przyczynowa f(t)1(t) L-transformowalna o 
transformacie F(s), to transformata funkcji przesuniętej f(t-t0)1(t-t0) dla t≥0 
określona jest następująco 

 [ ] 0ts
001 e)s(F)tt(1)tt(f −=−⋅−L  (15.20) 

 
Przykład: Dana jest funkcja wymuszenia napięciowego w postaci impulsu prosto-

kątnego. Należy wyznaczyć transformatę tej funkcji 

t

f(t)

0

U

t0

t

f(t)

0

U 1(t) 

-U 1(t-t ) 0 

U

-U

⎩
⎨
⎧

<<
<≤

=
00

0
)(

0

0

ttdla
ttdlaU

tf

inny opis 
)tt(1U)t(1U)t(f 0−⋅−⋅=

Zgodnie z twierdzeniem o liniowości oraz o przesunięciu w dziedzinie czasu napi-
szemy: 

[ ]

[ ] [ ] 0ts
0

0

e
s

U
s

U)tt(1U)t(1U

)tt(1U)t(1U)s(F

−−=−⋅−⋅=

−⋅−⋅=

LL

L
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E) Twierdzenie o przesunięciu w dziedzinie zmiennej zespolonej 

Jeżeli F(s) jest transformatą funkcji f(t) oraz a jest dowolną liczbą ze-
spoloną bądź rzeczywistą, to transformata o argumencie przesuniętym 
spełnia następującą zależność 

 [ ])t(fe)as(F ta−=+ L  (15.21) 

 

F) Twierdzenie o transformacie funkcji okresowej (o okresie T) 

Jeżeli f(t) = f(t+kT) , k=1,2 ... ; to 

 ts
T

e1
)s(F)s(F −−

=   

gdzie: dte)t(f)s(F ts
T

0
T

−∫=  

 
 
15.5.3. PODSTAWOWE PRAWA I SCHEMATY ZASTĘPCZE 

OBWODÓW W RACHUNKU OPERATOROWYM 
 

Najefektywniejszą drogą postępowania w metodzie operatorowej jest 
określenie transformat prądów i napięć bezpośrednio na podstawie obwo-
du bez konieczności układania równań różniczkowo całkowych. Aby to 
uzyskać należy opracować operatorowy schemat zastępczy danego ob-
wodu - w tym celu każdy element obwodu zastępuje się odpowiednim 
modelem w dziedzinie operatorowej. 

 
Modele operatorowe idealnych elementów obwodu określamy na 

podstawie: 

- operatorowych zależności między napięciem i prądem elementu; 

- praw Kirchhoffa w postaci operatorowej 
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I prawo Kirchhoffa 

∑
=

=
K

1k
kk 0)t(iλ  

gdzie: ik(t) – natężenie prądu w k-tej gałęzi; K – liczba gałęzi dołączonych do danego węzła 
 λk – współczynnik o wartości 1 lub –1, zależnie od zwrotu prądu względem węzła 

 
Po zastosowaniu do powyższego równania przekształcenia Laplace’a i 

wykorzystaniu twierdzenia o liniowości tego przekształcenia (15.16) 
otrzymujemy 

 ∑
=

=
K

1k
kk 0)s(Iλ  (15.22) 

Równanie (15.22) wyraża I prawo Kirchhoffa w postaci operatorowej 

Algebraiczna suma transformat prądów we wszystkich gałę-
ziach dołączonych do danego węzła schematu operatorowego 
jest równa zeru 

 
 

II prawo Kirchhoffa 

∑
=

=
J

1j
jj 0)t(uλ  

gdzie: uj(t) – napięcie na j-tym elemencie oczka; J – liczba elementów w oczku 
λj – współczynnik o wartości 1 lub –1, zależnie od zwrotu napięcia względem przyję-

tego obiegu po oczka 
 
Po zastosowaniu do ww. równania przekształcenia Laplace’a i wyko-

rzystaniu twierdzenia o liniowości otrzymujemy 

 ∑
=

=
J

1j
jj 0)s(Uλ  (15.23) 

Równanie (15.23) wyraża II prawo Kirchhoffa w postaci operatorowej 

Algebraiczna suma transformat napięć na wszystkich elemen-
tach wchodzących w skład danego oczka schematu operato-
rowego jest równa zeru 
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Operatorowe zależności między napięciem a prądem ideal-
nych elementów obwodu i ich modele operatorowe. 

REZYSTOR 
Przebiegi elektryczne napięcia i prądu rezystora o rezystancji R podle-

gają prawu Ohma 
 )()( tiRtu =   

Po zastosowaniu przekształcenia Laplace’a i wykorzystaniu twierdzenia o 
liniowości tego przekształcenia otrzymujemy 

 )()( sIRsU =  (15.24) 

R

U(s)

I(s)

 

Wzór (15.24) wyraża prawo Ohma w postaci operatorowej. Wynika 
z niego, że model operatorowy rezystora jest charakteryzowany jego rezy-
stancją R. 

CEWKA 

Opis w dziedzinie 
czasu 

Opis w dziedzinie 
operatorowej Model operatorowy 

dt
tidLtu )()( =  

)0()()( +−= LissLIsU  

(15.25) 

sL

U(s)

I(s)
Li(0 )+

 

∫= dttu
L

ti )(1)(  s
i

sL
sUsI )0()()(

+
+=  

(15.26) 

i(0 )+

ssLU(s)

I(s)
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KONDENSATOR 
Opis w dziedzinie 

czasu 
Opis w dziedzinie 

operatorowej Model operatorowy 

dt
tudCti )()( =  

)0()()( +−= CussCUsI  

(15.27) 
Cu(0 )+sCU(s)

I(s)

∫= dtti
C

tu )(1)(  s
u

sC
sIsU )0()()(

+
+=  

(15.28) U(s)

I(s)

u(0 )+

ssC
1

 

 

IDEALNE ŹRÓDŁO NAPIĘCIA I PRĄDU 

Idealne źródła napięcia i prądu w obwodzie elektrycznym charaktery-
zują napięcie źródłowe u0(t) lub natężenie prądu źródłowego iZ(t) - wielko-
ści niezależne od warunków pracy odpowiednich źródeł. W schemacie 
operatorowym obwodu, źródła te są charakteryzowane transformatami: 
 

napięcia źródłowego 

[ ])()( 00 tusU L=  (15.29) 

natężenia prądu źródłowego 

[ ])()( tisI ZZ L=  (15.30) 

U (s)0 u (t)0 

L

 

I (s)Z i (t)Z 

L
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PRZYKŁAD 15.2 

Rozpatrzmy gałąź pasywną zawierającą elementy R, L, C. 

R

U (s)R

I(s)

sL
U(s)

sC
1

L

Li (0 )L
+

s
u (0 )C

+

U (s)L

U (s)C

Ri(t)

u(t)
u (t)C

u (t)R

u (t)L

 
)s(U)s(U)s(U)s(U CLR ++=  

s
)0(u)s(I

Cs
1)0(iL)s(IsL)s(IR)s(U C

L

+
+ ++−+=  

⎥
⎦

⎤
⎢
⎣

⎡
++=⎥

⎦

⎤
⎢
⎣

⎡
−+

+
+

Cs
1sLR)s(I

s
)0(u)0(iL)s(U C

L  

⎥
⎦

⎤
⎢
⎣

⎡
−+=

=
⎥
⎦

⎤
⎢
⎣

⎡
−+

=
++

⎥
⎦

⎤
⎢
⎣

⎡
−+

=

+
+

+
+

+
+

s
)0(u)0(iL)s(Y)s(U)s(Y

)s(Z
s

)0(u)0(iL)s(U

Cs
1sLR

s
)0(u)0(iL)s(U

)s(I

C
L

C
L

C
L

 

gdzie: 
Cs
1sLR)s(Z ++=  impedancja operatorowa 

)s(Z1)s(Y =   admitancja operatorowa 
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15.5.4. METODY WYZNACZANIA 
ORYGINAŁU FUNKCJI OPERATOROWEJ 

 
W celu wyznaczenia funkcji czasu na podstawie danej transformaty 

najczęściej korzysta się z metod wynikających z własności przekształcenia 
Laplace’a. 
 
 
 
 
 
 
 
 
 METODA RESIDUÓW 
 

Funkcja operatorowa poszukiwanej odpowiedzi R(s) jest, dla obwo-
dów klasy SLS, kombinacją liniową operatorowej funkcji wymuszającej 
X(s) oraz parametrów obwodu, wyrażonych w konwencji operatorowej (R, 
sL, 1/sC) a ponadto członów opisujących warunki początkowe {LiL(0+), 
uC(0+)/s}. Jeśli funkcja operatorowa wymuszenia jest funkcją wymierną 
(dającą się wyrazić jako iloraz wielomianów zmiennej s), to i funkcja ope-
ratorowa odpowiedzi jest funkcją wymierną.  

Powyższe rozumowanie prowadzi do stwierdzenia, że w ogólnym 
przypadku funkcję operatorową możemy wyrazić jako iloraz dwóch wie-
lomianów zmiennej s 
 

 
)(
)()(

01
1

1

01
1

1
sM
sL

bsbsbsb
asasasasR m

m
m

m

n
n

n
n =

++++
++++

= −
−

−
−

K

K  (15.31) 

 

Równanie algebraiczne: 

L(s)=0 posiada pierwiastki: s1
0, s2

0 ... sn
0 , które nazywamy zerami R(s) 

M(s)=0 posiada pierwiastki: s1, s2 ... sm , które nazywamy biegunami R(s) 
 

R(s) r(t) 

Metoda residuów 

Metoda tablicowa 
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Jeśli znamy zera i bieguny funkcji R(s), to równanie (15.31) możemy 
przedstawić w postaci 

 

∏

∏

=

=

−

−

⋅= m

k
k

n

i
i

m

n

ss

ss

b
asR

1

1

0

)(

)(
)(  (15.32) 

Z zapisu (15.32) wynika jednoznacznie, że zera i bieguny funkcji R(s) 
nie mogą się pokrywać. Przyjmujemy ponadto, że n<m (stopień licznika 
jest mniejszy niż mianownika). 

Przy spełnieniu ww. warunków odwrotne przekształcenie Laplace’a 
możemy przedstawić w postaci 
 

 [ ] [ ] )(1)()()(
1

1 tesRressRtr ts
m

k ss k
⋅

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

== ∑
= =

−L  (15.33) 

 
to znaczy, że oryginał poszukiwanej funkcji r(t) jest równy sumie residu-
ów funkcji podcałkowej (15.14) we wszystkich biegunach sk operatorowej 
funkcji odpowiedzi R(s). 
 
 
UWAGA: 

Jeśli w wyrażeniu (15.32), w jego mianowniku wystąpią ele-
menty postaci s p lub (s-sk)

 p  - oznacza to, że w punkcie 0 lub 
sk występuje biegun p-krotny. 
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W przypadku biegunów wielokrotnych (niech w punkcie s=sk wy-

stępuje biegun p-krotny) funkcji R(s) residuum funkcji R(s)est obliczyć na-

leży z następującego wzoru 

 [ ] ( )
( )

( ) [ ]
⎭
⎬
⎫

⎩
⎨
⎧

−
−

= −

−

→=

tsp
kp

p

ss
ts

ss
esRss

ds
d

p
esRres

kk
)()(lim

!1
1)( 1

1
 (15.34) 

 

Przykład : Rozpatrzymy wyznaczenie L-1 transformaty funkcji 

)5()3(
1)( 2 ++

=
ss

sR  

Zadana funkcja ma jeden biegun 2-krotny s1=-3 i jeden pojedynczy s2=-5 
Wykorzystując wzór (15.33), otrzymujemy 

[ ] [ ]ts
ss

ts
ss

esRresesRrestr )()()(
21 ==

+=  

Następnie wykorzystujemy zależność (15.34) i uzyskujemy 
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W przypadku biegunów pojedynczych (jednokrotnych) funkcji R(s) 

residuum funkcji R(s)est w biegunie s=sk możemy wyznaczyć z następują-

cego wzoru 

 [ ] [ ]ts
kss

ts

ss
esRssesRres

kk
)()(lim)( −=

→=
 (15.35) 

 

 
Przykład : Rozpatrzymy wyznaczenie L-1 transformaty funkcji 

)2)(1(
10)(

++
=

ss
ssR  

Zadana funkcja ma dwa bieguny s1=-1 i s2=-2 

Wykorzystując wzór (15.33) otrzymujemy 

[ ] [ ]ts
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ts

ss
esRresesRrestr )()()(

21 ==
+=  

Na podstawie wzoru (10.35) uzyskujemy 
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UWAGA: 
Jeśli funkcja R(s) ma wyłącznie bieguny proste i nie posiada bie-

guna w zerze, bardzo wygodnym w stosowaniu przy obliczaniu oryginału 
jest tzw. wzór Heaviside’a, który nosi nazwę 

I-go twierdzenia o rozkładzie 

 )(1
)('

)()(
1

te
sM

sLtr ts
m

k k

k k ⋅= ∑
=

 (15.36) 

 
gdzie: L(sk) – wartość wielomianu L(s) dla s=sk 
 M’(sk) – wartość pochodnej wielomianu M(s) dla s=sk 
 
 
Przykład : Rozpatrzymy wyznaczenie L-1 transformaty funkcji 

3218
1085)( 2 ++

+
=

ss
ssR  

Zadana funkcja posiada bieguny  s1=-2 oraz  s2=-16 

Pochodna wielomianu mianownika M’(s) = 2s+18 

 
Po podstawieniu otrzymanych wartości do wzoru (15.36), wyznaczamy 
 

)(1)27(

18)16(2
108)16(5

18)2(2
108)2(5)(
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Jeśli funkcja R(s) ma wyłącznie bieguny proste i posiada biegun 
w zerze, to można ją przedstawić w postaci 

 
s

)s(M)s(Vgdzie
)s(V
)s(L)s(R ==  (15.37) 

przy czym stopień wielomianu V(s) wynosi m-1 

Wówczas 

 )(1
)('

)()(1
)0(
)0()(

1
te

sVs
sLt

V
Ltr ts

m

k kk

k k ⋅+⋅= ∑
=

 (15.38) 

jest to tzw. II twierdzenie o rozkładzie 

gdzie: L(0) – wartość wielomianu L(s) dla s=0 
 V(0) – wartość wielomianu V(s) dla s=0 
 V’(sk) – wartość pochodnej wielomianu V(s) dla s=sk  
 sk (k=1,2, ... m-1) – niezerowe bieguny transformaty 
 
Przykład : Rozpatrzymy wyznaczenie L-1 transformaty funkcji 

( )20045
2100)( 2 ++

=
sss

sR  

Pierwiastki wielomianu V(s):  s1=-5 oraz  s2=-40 

Pochodna wielomianu V’(s) = 2s+45 

Ponieważ jednocześnie: L(0)=2100  ,  V(0)=200 

to po podstawieniu obliczonych wartości do wzoru (15.38) wyznaczamy 

( ) ( )[ ] ( ) ( )[ ]
)(1)5,1125,10(

4540240
2100

45525
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200
2100)(
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eetr
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=
+−−

+
+−−
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15.6. ANALIZA STANÓW NIEUSTALONYCH 
W OBWODACH ELEKTRYCZNYCH KLASY SLS 

 
ZAŁOŻENIA 

Przyjmijmy, że: 

- dany jest obwód elektryczny w dziedzinie czasu, tzn. znana jest 
jego struktura (schemat obwodu) oraz wartości parametrów; 

- dane są funkcje wymuszające, np.: u0K(t), iZK(t), tzn. dany jest 
ich opis funkcyjny bądź wykres zmienności w czasie; 

- dany jest jednoznacznie czas komutacji tK, np.: tK=0; 
- opisany jest jednoznacznie stan energetyczny obwodu dla t < tK 

 
 
15.6.1. ALGORYTM ANALIZY 
 

Jeśli spełnione są wszystkie przedstawione powyżej założenia, wów-
czas metodyka postępowania w procesie analizy stanu nieustalonego z 
wykorzystaniem rachunku operatorowego jest ciągiem uporządkowanych 
następujących działań: 

① Ustalamy warunki początkowe (W.P.) w oparciu o znajomość stanu 
obwodu dla t < tK oraz praw komutacji; 

② Wyznaczamy na podstawie znajomości funkcji wymuszających  
[u0K(t), iZK(t)] ich postać operatorową [U0K(s), IZK(s)]; 

③ Sporządzamy schemat operatorowy obwodu uwzględniając W.P.; 

④ Dokonujemy analizy obwodu operatorowego (dowolną z poznanych 
metod analizy) i wyznaczamy postać operatorową poszukiwanej bądź 
poszukiwanych wielkości [R(s)]; 

⑤ Znajdujemy oryginał poszukiwanej bądź poszukiwanych wielkości 
[r(t)] i ewentualnie sporządzamy wykres zmienności tej wielkości. 
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WYJAŚNIENIE POJĘCIA 

RZĄD OBWODU 
 

• Obwody SLS rzędu pierwszego – obwody opisane równaniami 
różniczkowymi rzędu pierwszego. 
Obwody takie mają tylko jeden element inercyjny. 

 
• Obwody SLS wyższych rzędów– obwody opisane równaniami 

różniczkowymi rzędu wyższego niż pierwszy. 
Obwody takie zawierają więcej niż  jeden element inercyjny. 

 
____________________________ 
Rozważmy szeregowy obwód RLC, do którego w chwili t=0 zostaje dołą-
czona siła elektromotoryczna e. Równanie obwodu dla t>0 ma postać 
 

eudti
Cdt

diLRi
t

=+++ ∫ 0
0

1  

Wiedząc, że 

dt
duCi C=           oraz        0

0

1 udti
C

u
t

C += ∫  

 
otrzymujemy 

eu
dt
udLC

dt
duRC C

CC =++
2
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15.6.2. OBWODY PIERWSZEGO RZĘDU 

Rozpatrzymy stan nieustalo-
ny w obwodzie szeregowym RC. 
W chwili t=0 otwarto wyłącznik 
W. Wyznaczyć przebieg prądu, 
jeżeli u(t)=U0=10V, R=100Ω, 
C=2mF. 

C
w

R

U0 t=0 uC(t)

i(t)

① Ustalamy warunki początkowe (W.P.) w oparciu o znajomość stanu 
obwodu dla t < tK oraz praw komutacji : 

0)0(u)0(u CC == −+  

② Wyznaczamy na podstawie znajomości funkcji wymuszającej jej po-
stać operatorową : 

[ ] [ ]
s

UU)t(u)s(U 0
0 === LL  

③ Sporządzamy schemat opera-
torowy obwodu uwzględniając 
W.P. 

 

R

U (s)R

I(s)

U(s)
sC
1

U (s)C

④ Dokonujemy analizy obwodu operatorowego i wyznaczamy postać 
operatorową poszukiwanej wielkości. 

Zgodnie z prawem Ohma: 
5s

1,0

CR
1sR

U

Cs
1Rs

U)s(I 00

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=  

⑤ Znajdujemy oryginał poszukiwanej wielkości. 
 

Na podstawie tabeli (lp.5): )t(1e1,0)t(i t5−=  
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PRZYKŁAD 15.3: W chwili t=0 otwarto wyłącznik W. Narysować prze-
bieg prądu cewki przed i po tej chwili. Obliczyć prąd 
w cewce po 3ms od chwili otwarcia W. 

Dane: 
dla t<0 w układzie panował stan 
ustalony, 
L = 0,1 H, R = 10 Ω. 
u(t) = 157 sin(314t+120o),  

w
u(t) R

iL(t)

L

t=0

 

① Ustalamy warunki początkowe (W.P.) w oparciu o znajomość stanu 
obwodu dla t < tK oraz praw komutacji : 

120157 j
m eU =  

( ) 3090
90 5 jjm

j

j
mm

mL ee
L

U
eL
eU

Lj
UI ==== −Ψ

Ψ

ωωω
 

dla t < 0 ( ) ( )030314sin5 += ttiL  

dla t = 0 ( ) 5,230sin50 0 ==Li  

zatem ( ) ( ) 5,200 == −+
LL ii  

② Wyznaczamy na podstawie znajomości funkcji wymuszającej jej po-
stać operatorową : BRAK 

 

③ Sporządzamy schemat ope-
ratorowy obwodu uwzględ-
niając W.P. 

 

R

IL(s)

sL

Li(0 )+

 

④ Dokonujemy analizy obwodu operatorowego i wyznaczamy postać 
operatorową poszukiwanej wielkości. 
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Zgodnie z NPK: ( )+=+ 0)()( LisIRsIsL LL  

[ ] ( )+=+ 0)( LiRsLsIL  

( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ +

=
+

=
+

= ++
+

L
RsL

Li
RsL

Li
RsL

LisIL
10100)(  

( )
100
15,210)(
+

=
+

= +

s
L
Rs

isIL  

⑤ Znajdujemy oryginał poszukiwanej wielkości. 

[ ] )(1)()(
1

tesIresti ts
L

m

k ss
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k
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⎭
⎬
⎫

⎩
⎨
⎧

= ∑
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⎫
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⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
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⎭
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CZYLI: 

dla t < 0 dla t = 0 dla t > 0 
( ) ( )030314sin5 += ttiL  2,5 ( ) t

L eti 1005,2 −=  

0

i tL( )

Im

t
2,5

1,852

3ms
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PRZYKŁAD 15.4: W chwili t=0 zamknięto wyłącznik W. Wyznaczyć 
przebieg prądu i napięcia na kondensatorze.  

w

e(t)
Ri(t)

C uC(t)

 

t

e(t)

0

E

t0  
 

① Ustalamy warunki początkowe (W.P.) w oparciu o znajomość stanu 
obwodu dla t < tK oraz praw komutacji : 

0)0(u)0(u CC == −+  

② Wyznaczamy na podstawie znajomości funkcji wymuszającej jej po-
stać operatorową : 

 

t

e(t)

0

E

t0

t

e(t)

0

E 1(t)

-E 1(t-t ) 0 

E

-E  

)(1)(1)( 0ttEtEte −⋅−⋅=  

Wiemy, że   [ ]
s
EtE =⋅ )(1L  

Czyli zgodnie z twierdzeniem o przesunięciu w dziedzinie czasu  

[ ] ( ) [ ] 0)()(1)()( 00
tsesFttttftosFtfGdy −=−⋅−= LL  

i liniowości napiszemy: 

( )00 1)( tsts e
s
Ee

s
E

s
EsE −− −=−=  
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③ Sporządzamy schemat opera-
torowy obwodu uwzględniając 
W.P. 

 

R

I(s)

E(s) sC
1U (s)C 

 
④ Dokonujemy analizy obwodu operatorowego i wyznaczamy postać 

operatorową poszukiwanej wielkości. 

Operatorowy prąd obwodu: 
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Operatorowe napięcie na zaciskach kondensatora: 
 

( )
⎥
⎥
⎥
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⎣
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⑤ Znajdujemy oryginał poszukiwanej wielkości. 
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15.6.3. OBWODY DRUGIEGO RZĘDU 
Najprostszym reprezentantem takich obwodów jest obwód szeregowy 

RLC. 

Załóżmy, że napięcie działa-
jące na zaciskach takiego obwodu 
jest wymuszeniem napięciowym 
opisanym funkcją stałą i przyczy-
nową u(t)=U1(t). Przyjmijmy, że 
poszukujemy funkcji prądu i(t). 

Ri(t)

u(t)=U1(t)
u (t)C

u (t)R

u (t)L

① Ustalamy warunki początkowe (W.P.) w oparciu o znajomość stanu 
obwodu dla t < tK oraz praw komutacji : 
Warunki początkowe z uwagi na fakt, że dla t<0 U=0 możemy zgod-

nie z I i II prawem komutacji napisać 

⎪⎭

⎪
⎬
⎫

==

==
+−

+−

0)0(u)0(u

0)0(i)0(i

CC

LL  

② Wyznaczamy na podstawie znajomości funkcji wymuszającej jej po-
stać operatorową : 

[ ] [ ]
s

UU)t(u)s(U 0
0 === LL  

③ Sporządzamy schemat operato-
rowy obwodu uwzględniając 
W.P. 

 

R

U (s)R

I(s)

sLU(s)

sC
1

U (s)L

U (s)C
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④ Dokonujemy analizy obwodu operatorowego i wyznaczamy postać 
operatorową poszukiwanej wielkości. 

Prąd w obwodzie możemy wyznaczyć zgodnie z prawem Ohma 
 

CL
s

L
RsL

U

Cs
sLR

s
U

sZ
sUsI 1

1
1)(

)()(
2 ++

⋅=
++

==  

⑤ Znajdujemy oryginał poszukiwanej wielkości. 
 

Równanie opisujące prąd w obwodzie jest funkcją wymierną 

)(
)()(
sM
sL

L
UsI ⋅=  

W celu wyznaczenia transformaty odwrotnej należy obliczyć pier-
wiastki mianownika I(s), czyli 

01)( 2 =++=
CL

s
L
RssM  

W wyniku rozwiązania powyższego równania otrzymujemy bieguny 
operatorowej funkcji prądu 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−−
=

+−
=

2

2

2

1

Δ

Δ

L
R

s

L
R

s
 

gdzie 
LCL

R 42
−⎟

⎠
⎞

⎜
⎝
⎛=Δ  (*) 

jest wyróżnikiem M(s) 
 



OBWODY I SYGNAŁY 2 Wykład 15 : Stany nieustalone w obwodach SLS 

 

dr inż. Marek Szulim 
e-mail: mszulim@wat.edu.pl 

 

 
38 /41

 
Możliwe są  trzy przypadki rozwiązania: 

 
A)  Δ > 0 – dwa pierwiastki rzeczywiste M(s) 

→ oznacza dwa bieguny pojedyncze I(s) 
 
B)  Δ = 0 – jeden pierwiastek podwójny M(s) 

→ oznacza jeden biegun dwukrotny I(s) 
 
C)  Δ < 0 – dwa pierwiastki zespolone-sprzężone M(s) 

→ oznacza dwa bieguny zespolone-sprzężone I(s) 
 
 

Z zależności (*) wynika, że: 
 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

<<

==

>>

C
L2Rgdy0

C
L2Rgdy0

C
L2Rgdy0

Δ

Δ

Δ

 

Rozważymy teraz możliwe przypadki rozwiązania 
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Przypadek A - APERIODYCZNY 

Oba bieguny są rzeczywiste: 
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Przypadek B – APERIODYCZNY-KRYTYCZNY 
Jeden biegun dwukrotny: 
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Przebieg czasowy prądu: 
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Przypadek C – OCYLACYJNY 
Dwa bieguny zespolone-sprzężone: 
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Przebieg czasowy prądu: 
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i(t)

t

Oscylacyjny

Aperiodyczny-krytyczny

Aperiodyczny

 

Przebiegi czasowe wyznaczonych prądów 
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15.6.4. WNIOSKI 
 

Na podstawie dotychczas omówionych przykładów jesteśmy w stanie 
sformułować wnioski dotyczące zależności pomiędzy położeniem biegu-
na sK operatorowej funkcji odpowiedzi R(s) a jej funkcją czasu r(t). 

Załóżmy, że wielomian mianownika M(s) funkcji operatorowej R(s) 
nie posiada pierwiastków wielokrotnych a jedynie pojedyncze, np.: 
 

BIEGUN 
 FUNKCJA CZASU 

PRZYPORZĄDKOWANA 
BIEGUNOWI 

0s1 =  → )t(1A  

)0a(as2 >=  → )t(1eA ta  

)0a(as3 <=  → )t(1eA ta−  

( ) ( ) )0a(,jas,jas *
44 >−=+= ωω  → )t(1tsineA ta ω−  

( ) ( ) )0a(,jas,jas *
55 <−=+= ωω  → )t(1tsineA ta ω−  

ωω js,js *
66 −=+=  → )t(1tsinA ω  
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A
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A
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*
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*
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*
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Zależność r(t) od biegunów R(s) na płaszczyźnie s 

 


